WelcomeUser Guide
ToSPrivacyCanary
DonateBugsLicense

©2025 Poal.co

582

Yeah, that can't be cheap....

Archive: https://archive.today/GSzO6

From the post:

>In the era of foundation models, multimodal AI, LLMs, and ever-larger datasets, access to raw compute is still one of the biggest bottlenecks for researchers, founders, developers, and engineers. While the cloud offers scalability, building a personal AI Workstation delivers complete control over your environment, latency reduction, custom configurations and setups, and the privacy of running all workloads locally. This post covers our version of a four-GPU workstation powered by the new NVIDIA RTX 6000 Pro Blackwell Max-Q GPUs. This build pushes the limits of desktop AI computing with 384GB of VRAM (96GB each GPU), all in a shell that can fit under your desk.

Yeah, that can't be cheap.... Archive: https://archive.today/GSzO6 From the post: >>In the era of foundation models, multimodal AI, LLMs, and ever-larger datasets, access to raw compute is still one of the biggest bottlenecks for researchers, founders, developers, and engineers. While the cloud offers scalability, building a personal AI Workstation delivers complete control over your environment, latency reduction, custom configurations and setups, and the privacy of running all workloads locally. This post covers our version of a four-GPU workstation powered by the new NVIDIA RTX 6000 Pro Blackwell Max-Q GPUs. This build pushes the limits of desktop AI computing with 384GB of VRAM (96GB each GPU), all in a shell that can fit under your desk.

(post is archived)