WelcomeUser Guide
ToSPrivacyCanary
DonateBugsLicense

©2025 Poal.co

859

(post is archived)

[–] 0 pt (edited )

According to Einstein’s Theory of Special Relativity, time slows down more and more as a moving object reaches closer to the speed of light, at which point time stops completely, mass becomes infinite, and space contracts to a point in the direction of travel (all points come closer together). Following this reasoning, it has been popularly suggested, and even supposedly proven, that if a spaceship were to leave Earth and travel out into space at near-light-speeds for a period of time before returning again, there would be a measurable time discrepancy between the crew on the ship and the people on Earth, with the crew having aged more slowly than the people on Earth. This scenario is often used in explaining the strangeness of spacetime as it is understood within the Einsteinian framework.

There is a definite problem with this understanding, however, and this problem can be seen more clearly when we reconsider the basic premise to the theory of special relativity, which is that all things – including time – are relative. This means that the time differentiation between the spaceship and Earth must necessarily affect both the crew on the ship and the people on Earth equally, rather than just the crew, as is commonly understood. What scientists seem to have completely ignored is that if we can say that the spaceship is moving away from Earth at near-light-speed, then we can just as well say that Earth is moving away from the spaceship at the same speed. What is moving is relative to the orientation of the observer, and so the observers on the spaceship and on Earth must be equally affected. In other words, if the crew on the spaceship is aging more slowly relative to the people on Earth, then the people on Earth must necessarily be aging more slowly relative to the crew on the ship. The effect will be relative, rather than applicable from only one of the two reference points.