In the late 1960s, Satoshi Ōmura, a microbiologist at Tokyo’s Kitasako Institute, was hunting for new antibacterial compounds and started to collect thousands of soil samples from around Japan. He cultured bacteria from the samples, screened the cultures for medicinal potential, and sent them 10,000 km away to Merck Research Labs in New Jersey, where his collaborator, William Campbell, tested their effect against parasitic worms affecting livestock and other animals. One culture, derived from a soil sample collected near a golf course southwest of Tokyo, was remarkably effective against worms. The bacterium in the culture was a new species, and was baptised Streptomyces avermictilis. The active component, named avermectin, was chemically modified to increase its activity and its safety. The new compound, called ivermectin, was commercialised as a product for animal health in 1981 and soon became a top-selling veterinary drug in the world. // ISGlobal
Ivermectin (IVM) is one of the best known and most widely used antiparasitic drugs in human and veterinary medicine. From a fortuitous discovery on a Japanese golf course to a Nobel Prize, the impact of IVM on human health to date has been extraordinary. Notwithstanding the role of IVM in global food production, the Mectizan Donation Program has lifted the burden of onchocerciasis (river blindness) and, subsequently, lymphatic filariasis (elephantiasis), from millions of people in the poorest countries in the world, and set a precedent for the role of public–private partnerships in global health. // ScienceDirect
Certain studies have highlighted the significance of ivermectin in COVID-19; however, it requires evidences from more Randomised Controlled Trials (RCTs) and dose- response studies to support its use. In silico-based analysis of ivermectin’s molecular interaction specificity using AI and classical mechanics simulation-based methods indicates positive interaction of ivermectin with viral protein targets, which is leading for SARS-CoV 2 N-protein NTD (nucleocapsid protein N-terminal domain). // SpringerLink
In the late 1960s, Satoshi Ōmura, a microbiologist at Tokyo’s Kitasako Institute, was hunting for new antibacterial compounds and started to collect thousands of soil samples from around Japan. He cultured bacteria from the samples, screened the cultures for medicinal potential, and sent them 10,000 km away to Merck Research Labs in New Jersey, where his collaborator, William Campbell, tested their effect against parasitic worms affecting livestock and other animals. One culture, derived from a soil sample collected near a golf course southwest of Tokyo, was remarkably effective against worms. The bacterium in the culture was a new species, and was baptised Streptomyces avermictilis. The active component, named avermectin, was chemically modified to increase its activity and its safety. The new compound, called ivermectin, was commercialised as a product for animal health in 1981 and soon became a top-selling veterinary drug in the world. // ISGlobal
Ivermectin (IVM) is one of the best known and most widely used antiparasitic drugs in human and veterinary medicine. From a fortuitous discovery on a Japanese golf course to a Nobel Prize, the impact of IVM on human health to date has been extraordinary. Notwithstanding the role of IVM in global food production, the Mectizan Donation Program has lifted the burden of onchocerciasis (river blindness) and, subsequently, lymphatic filariasis (elephantiasis), from millions of people in the poorest countries in the world, and set a precedent for the role of public–private partnerships in global health. // ScienceDirect
Certain studies have highlighted the significance of ivermectin in COVID-19; however, it requires evidences from more Randomised Controlled Trials (RCTs) and dose- response studies to support its use. In silico-based analysis of ivermectin’s molecular interaction specificity using AI and classical mechanics simulation-based methods indicates positive interaction of ivermectin with viral protein targets, which is leading for SARS-CoV 2 N-protein NTD (nucleocapsid protein N-terminal domain). // SpringerLink
(post is archived)