WelcomeUser Guide
ToSPrivacyCanary
DonateBugsLicense

©2025 Poal.co

(post is archived)

[–] 2 pts

These signs will be turned off because there is no electricity. The mechanical signs will have NA and -.--9 on them because no gas is available. You won't want to go there anyway because niggers will have moved in and made it their home. 3 years from now tops.

2 years. 2025 is when multiple pension funds, social security, and now a fuck load of other funds and trusts, run out of money. 2025 will be a reckoning. Lots and lots of reckoning.

[–] 0 pt

2025 is when multiple pension funds, social security, and now a fuck load of other funds and trusts,run out of money

Such as?

[–] 0 pt

Bitcoin halving comes Q1 2024. Already beginning to be seen as a safe haven, it only fell about 55% while the Nasdaq fell 25% and lots of tech funds such as ARKK fell 70% to 80%. So Bitcoin isn't quite as stable as a broad index fund but it's definitely no longer on the fringe. This signals a huge shift in thinking and I think the next bull will be pretty big while the subsequent bear will be tamed by sentiment continuing to shift towards Bitcoin as wealth protection. Eventually the bears will be flat or even slightly increasing. 2025, in the wake of the 2024 halving, will likely be one such bitcoin bear. I suspect at that point it will fall in sync with the Nasdaq or QQQ during your predicted recession. Once BTC reaches the stability of a major index, even the Nasdaq, the speculation phase will be over.

I don't think bitcoin will be stable, because there have been tooo many breakthroughs with decrypting RSA lately. While the RSA challange has not been claimed yet, there are too many governments and organizations that want to break it to keep it going, and that's IF they want you to know they broke it.

https://eprint.iacr.org/2021/933

Abstract: To factor an integer N we construct n triples of pn-smooth integers u,v,|u−vN| for the n-th prime pn. Denote such triple a fac-relation. We get fac-relations from a nearly shortest vector of the lattice L(Rn,f) with basis matrix Rn,f∈R(n+1)×(n+1) where f:[1,n]→[1,n] is a permutation of [1,2,…,n] and (f(1),…,f(n),N′lnN) is the diagonal and (N′lnp1,…,N′lnpn,N′lnN) for N′=N1n+1 is the last line of Rn,f. An independent permutation f′ yields an independent fac-relation. We find sufficiently short lattice vectors by strong primal-dual reduction of Rn,f. We factor N≈2400 by n=47 and N≈2800 by n=95. Our accelerated strong primal-dual reduction of [GN08] factors integers N≈2400 and N≈2800 by 4.2⋅109 and 8.4⋅1010 arithmetic operations, much faster then the quadratic sieve and the number field sieve and using much smaller primes pn. This destroys the RSA cryptosystem.

This destroys the RSA cryptosystem.

It's a bold claim, but if the cryptosystem is not destroyed, then it sure as hell is not healthy. Note the time frame for this thesis, around this time was when a major crypto dump hit and we have been seeing Wyckoff distributions ever since.

[–] 0 pt

I don’t think the blacks will last three years.