WelcomeUser Guide
ToSPrivacyCanary
DonateBugsLicense

©2025 Poal.co

1.5K

Archive: https://archive.today/5iJ4k

From the post:

>[Zoltan] was developing a workshop on Matter for DEF CON, and wanted to whip up a fun IoT project to go with it. His idea was simple—take a simple toy train, and put it on the Internet of Things. Speed and low cost were the goals here, with a budget of around $40 and a timeline of one week. The train set sourced for the build was a 43 piece set with a locomotive, one carriage, and a simple oval track, retailing for $25. The toy train got a new brain in the form of an ESP32-C3 DevKitM-1, with the goal of commanding the device over Wi-Fi for ease of use. The microcontroller was set up to control the train’s brushed DC motor with an IRL540 MOSFET. A USB battery bank was initially employed to power the rig, which sat neatly on the train’s solitary carriage. This was later swapped out for a CR123A battery, which did the job for the train’s short duration in service.

Archive: https://archive.today/5iJ4k From the post: >>[Zoltan] was developing a workshop on Matter for DEF CON, and wanted to whip up a fun IoT project to go with it. His idea was simple—take a simple toy train, and put it on the Internet of Things. Speed and low cost were the goals here, with a budget of around $40 and a timeline of one week. The train set sourced for the build was a 43 piece set with a locomotive, one carriage, and a simple oval track, retailing for $25. The toy train got a new brain in the form of an ESP32-C3 DevKitM-1, with the goal of commanding the device over Wi-Fi for ease of use. The microcontroller was set up to control the train’s brushed DC motor with an IRL540 MOSFET. A USB battery bank was initially employed to power the rig, which sat neatly on the train’s solitary carriage. This was later swapped out for a CR123A battery, which did the job for the train’s short duration in service.

(post is archived)